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Abstract
For the super AKNS system, an implicit symmetry constraint between the
potentials and the eigenfunctions is proposed. After introducing some
new variables to explicitly express potentials, the super AKNS system is
decomposed into two compatible finite-dimensional super systems (x-part and
tn-part). Furthermore, we show that the obtained super systems are integrable
super Hamiltonian systems in the supersymmetry manifold R

4N+2|2N+2.

PACS numbers: 02.90.+p, 02.30.IK

1. Introduction

In 1988, Professor Cao proposed the mono-nonlinearization method of Lax pairs for the
classical integrable (1+1)-dimensional system [1]. The key of mono-nonlinearization is to find
the constraint between the potentials and the eigenfunctions of the Lax system. After choosing
some distinct spectral parameters and considering the constraint, the Lax system is decomposed
into finite-dimensional systems whose variables can be separated, and furthermore, the
obtained finite-dimensional systems are completely integrable Hamiltonian systems in the
Liouville sense. Several years later, the method was extended to classical integrable (2+1)-
dimensional systems [2–4]. Thereafter, the method was continued to generalize in the
following two aspects. One was the binary nonlinearization method of the Lax pairs and its
adjoint Lax pairs for the classical integrable systems, which was firstly proposed by Professor
Ma in [5]. And the other was the higher order constraints (i.e. implicit constraints), which
were widely studied in [6–8]. In other words, the method of nonlinearization was extensively
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studied by many researchers in the past 20 years. Followed from this, many finite-dimensional
integrable Hamiltonian systems were obtained.

In recent years, several integrable super systems [9–11] and integrable supersymmetry
systems [12–14] have aroused significant interest in many mathematicians and physicists,
such as Darboux transformation [15, 16], Hamiltonian structures [17–19] and so on. In very
recent years, nonlinearization of the super AKNS system has been studied in [20], where
we considered an explicit symmetry constraint of the super AKNS system, and we proved
that under the explicit constraint, the super AKNS system was a completely integrable super
Hamiltonian system in the Liouville sense. Inspired by this and the implicit constraint of the
classical integrable system, the question has arisen whether an implicit symmetry constraint
is available for the super AKNS system. In the present paper, we shall solve this problem.

The paper is organized as follows. In the next section, we propose an implicit symmetry
constraint between the potentials and the eigenfunctions of the super AKNS system. Then in
section 3, under the constraint, the super AKNS system is decomposed into two compatible
finite-dimensional super systems. And furthermore, we show that the obtained finite-
dimensional super systems are completely integrable in the Liouville sense. Finally, some
conclusions and discussions are listed in section 4.

2. An implicit symmetry constraint of the super AKNS hierarchy

In [20], we considered the binary nonlinearization of the super AKNS system under an explicit
symmetry constraint, and obtained the finite-dimensional integrable super Hamiltonian system.
Here we will propose an implicit symmetry constraint of the super AKNS system. Therefore,
this paper can be regarded as a continuation of [20]. For simplicity, we omit the detailed
derivation of the super AKNS hierarchy, which can be referred to [20]. In what follows, we
shall propose an implicit symmetry constraint between the potential and the eigenfunctions.
To this aim, we consider the super AKNS spectral problem

φx = Mφ, M =
⎛
⎝−λ q α

r λ β

β −α 0

⎞
⎠ , φ =

⎛
⎝φ1

φ2

φ3

⎞
⎠ , (1)

and its adjoint spectral problem

ψx = −MStψ =
⎛
⎝ λ −r β

−q −λ −α

−α −β 0

⎞
⎠ ψ, ψ =

⎛
⎝ψ1

ψ2

ψ3

⎞
⎠ , (2)

where St means supertranspose [21].
By a similar way of the counterpart in the classical system [5, 22], it is not difficult to get

the variational derivative of the parameter with respect to the potential

δλ

δU0
=

⎛
⎜⎜⎜⎜⎝

δλ
δr

δλ
δq

δλ
δβ

δλ
δα

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎝

ψ2φ1

ψ1φ2

ψ2φ3 − ψ3φ1

ψ1φ3 + ψ3φ2

⎞
⎟⎟⎠ , (3)

where U0 = (r, q, β, α)T . Imposing the zero boundary conditions lim|x|→∞ φi =
lim|x|→∞ ψi = 0(i = 1, 2, 3), we can verify a simple characteristic property

L1
δλ

δU0
= λ

δλ

δU0
, (4)
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where

L1 =

⎛
⎜⎜⎜⎜⎝

− 1
2∂x + q∂−1

x r −q∂−1
x q 1

2α + 1
2q∂−1

x β − 1
2q∂−1

x α

r∂−1
x r 1

2∂x − r∂−1
x q 1

2 r∂−1
x β − 1

2β − 1
2 r∂−1

x α

2β − 2α∂−1
x r 2α∂−1

x q −∂x − α∂−1
x β −q + α∂−1

x α

2β∂−1
x r 2α − 2β∂−1

x q r + β∂−1
x β ∂x − β∂−1

x α

⎞
⎟⎟⎟⎟⎠ , (5)

with ∂x = d
dx

, ∂x∂
−1
x = ∂−1

x ∂x = 1.

Choosing N distinct spectral parameters λ1, . . . , λN , the super AKNS spectral problem (1)
and the adjoint spectral problem (2) become the following finite-dimensional super systems:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ1j,x = −λjφ1j + qφ2j + αφ3j , 1 � j � N,

φ2j,x = rφ1j + λjφ2j + βφ3j , 1 � j � N,

φ3j,x = βφ1j − αφ2j , 1 � j � N,

ψ1j,x = λjψ1j − rψ2j + βψ3j , 1 � j � N,

ψ2j,x = −qψ1j − λjψ2j − αψ3j , 1 � j � N,

ψ3j,x = −αψ1j − βψ2j , 1 � j � N.

(6)

In what follows, let us consider the traditional symmetry constraints

⎛
⎜⎜⎝

bk+1

ck+1

−2ρk+1

2δk+1

⎞
⎟⎟⎠ =

N∑
j=1

γj

⎛
⎜⎜⎜⎜⎜⎝

δλj

δr

δλj

δq

δλj

δβ

δλj

δα

⎞
⎟⎟⎟⎟⎟⎠

, (7)

where γj (1 � j � N) are usual constants and k � 0. In [20], we have chosen k = 0
and γj = 1(1 � j � N) in the above constraint. Thus, we obtained an explicit symmetry
constraint (i.e. the potentials can be expressed by the eigenfunctions explicitly). While in this
paper, we will extend our previous work and choose k = 1 and γj = − 1

2 (1 � j � N) in
equation (7). That is to say, we obtain the following implicit symmetry constraint:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

qx = 〈�2,�1〉,
rx = −〈�1,�2〉,
αx = − 1

4 (〈�2,�3〉 − 〈�3,�1〉),
βx = − 1

4 (〈�1,�3〉 + 〈�3,�2〉),

(8)

where �i = (φi1, . . . , φiN )T ,�i = (ψi1, . . . , ψiN)T , i = 1, 2, 3, and 〈·, ·〉 denotes the
standard inner product in the Euclidean space RN. Obviously, the constraint (8) is an implicit
constraint. That is to say, the potentials of the finite-dimensional super systems (6) cannot be
expressed by the eigenfunctions explicitly, which is different from the constraint in [20]. In
order to consider the nonlinearization of the super AKNS system under the implicit symmetry
constraint (8), we should take some measures.

3. Nonlinearization of the super AKNS system under an implicit symmetry constraint

Now we are in a position to discuss the nonlinearization of the super AKNS system under the
implicit symmetry constraint (8). To this aim, we firstly introduce the following new variables:

φN+1 = q, φN+2 = 2α, ψN+1 = r, ψN+2 = −2β. (9)

3
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Considering the new variables (9) and substituting the constraint (8) into the system (6), we
obtain the following finite-dimensional super system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ1j,x = −λjφ1j + φN+1φ2j + 1
2φN+2φ3j , 1 � j � N,

φ2j,x = ψN+1φ1j + λjφ2j − 1
2ψN+2φ3j , 1 � j � N,

φ3j,x = − 1
2ψN+2φ1j − 1

2φN+2φ2j , 1 � j � N,

φN+1,x = 〈�2,�1〉,
φN+2,x = − 1

2 (〈�2,�3〉 − 〈�3,�1〉),
ψ1j,x = λjψ1j − ψN+1ψ2j − 1

2ψN+2ψ3j , 1 � j � N,

ψ2j,x = −φN+1ψ1j − λjψ2j − 1
2φN+2ψ3j , 1 � j � N,

ψ3j,x = − 1
2φN+2ψ1j + 1

2ψN+2ψ2j , 1 � j � N,

ψN+1,x = −〈�1,�2〉,
ψN+2,x = 1

2 (〈�1,�3〉 + 〈�3,�2〉).

(10)

Obviously, equation (10) can be written in the following super Hamiltonian form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�1,x = ∂H1

∂�1
, �2,x = ∂H1

∂�2
, �3,x = ∂H1

∂�3
,

φN+1,x = ∂H1

∂ψN+1
, φN+2,x = ∂H1

∂ψN+2
,

�1,x = −∂H1

∂�1
, �2,x = −∂H1

∂�2
, �3,x = ∂H1

∂�3
,

ψN+1,x = − ∂H1

∂φN+1
, ψN+2,x = ∂H1

∂φN+2
,

(11)

where the super Hamiltonian is given by

H1 = −〈�1,�1〉 + 〈�2,�2〉 + φN+1〈�1,�2〉 + ψN+1〈�2,�1〉
+ 1

2φN+2(〈�1,�3〉 + 〈�3,�2〉) − 1
2ψN+2(〈�2,�3〉 − 〈�3,�1〉).

That is to say, the nonlinearized finite-dimensional super system (10) is a super Hamiltonian
system.

In what follows, let us consider the temporal part of the super AKNS hierarchy

φtn = N(n)φ = (λnN)+φ, (12)

with

(λnN)+ =
n∑

j=0

⎛
⎝aj bj ρj

cj −aj δj

δj −ρj 0

⎞
⎠ λn−j ,

where the symbol ‘+’ denotes taking the nonnegative power of λ. When considered the N
distinct spectral parameter λ1, . . . , λN , the temporal part of the super AKNS system becomes
the following super system:
⎛
⎜⎝

φ1j

φ2j

φ3j

⎞
⎟⎠

tn

=

⎛
⎜⎜⎝

∑n
i=0 aiλ

n−i
j

∑n
i=0 biλ

n−i
j

∑n
i=0 ρiλ

n−i
j∑n

i=0 ciλ
n−i
j −∑n

i=0 aiλ
n−i
j

∑n
i=0 δiλ

n−i
j∑n

i=0 δiλ
n−i
j −∑n

i=0 ρiλ
n−i
j 0

⎞
⎟⎟⎠

⎛
⎜⎝

φ1j

φ2j

φ3j

⎞
⎟⎠ , 1 � j � N, (13)

4
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whose adjoint super system is given by
⎛
⎜⎝

ψ1j

ψ2j

ψ3j

⎞
⎟⎠

tn

=

⎛
⎜⎜⎝

−∑n
i=0 aiλ

n−i
j −∑n

i=0 ciλ
n−i
j

∑n
i=0 δiλ

n−i
j

− ∑n
i=0 biλ

n−i
j

∑n
i=0 aiλ

n−i
j −∑n

i=0 ρiλ
n−i
j

−∑n
i=0 ρiλ

n−i
j −∑n

i=0 δiλ
n−i
j 0

⎞
⎟⎟⎠

⎛
⎜⎝

ψ1j

ψ2j

ψ3j

⎞
⎟⎠ , 1 � j � N.

(14)

For n = 1, the systems (13) and (14) are exactly the spatial systems (1) and (2), respectively.
In particular, as for t2-part, the nonlinearized super systems (13) and (14) become the following
system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ1j,t2 = (−λ2
j + 1

2qr + αβ
)
φ1j +

(
qλj − 1

2qx

)
φ2j + (αλj − αx)φ3j , 1 � j � N,

φ2j,t2 = (
rλj + 1

2 rx

)
φ1j +

(
λ2

j − 1
2qr − αβ

)
φ2j + (βλj + βx)φ3j , 1 � j � N,

φ3j,t2 = (βλj + βx)φ1j + (−αλj + αx)φ2j , 1 � j � N,

ψ1j,t2 = (
λ2

j − 1
2qr − αβ

)
ψ1j − (

rλj + 1
2 rx

)
ψ2j + (βλj + +βx)ψ3j , 1 � j � N,

ψ2j,t2 = (−qλj + 1
2qx

)
ψ1j +

(−λ2
j + 1

2qr + αβ
)
ψ2j + (−αλj + αx)ψ3j , 1 � j � N,

ψ3j,t2 = (−αλj + αx)ψ1j − (βλj + βx)ψ2j , 1 � j � N.

(15)

Considering the new variables (9) and the implicit constraint (8), the above finite-dimensional
super system (15) becomes the following nonlinearized super system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ1j,t2 = (−λ2
j + 1

2φN+1ψN+1 − 1
4φN+2ψN+2

)
φ1j +

(
φN+1λj − 1

2 〈�2,�1〉
)
φ2j

+ 1
4 (2φN+2λj + 〈�2,�3〉 − 〈�3,�1〉)φ3j ,

φ2j,t2 = (
ψN+1λj − 1

2 〈�1,�2〉
)
φ1j +

(
λ2

j − 1
2φN+1ψN+1 + 1

4φN+2ψN+2
)
φ2j

− 1
4 (2ψN+2λj + 〈�1,�3〉 + 〈�3,�2〉)φ3j ,

φ3j,t2 = − 1
4 (2ψN+2λj + 〈�1,�3〉 + 〈�3,�2〉)φ1j

− 1
4 (2φN+2λj + 〈�2,�3〉 − 〈�3,�1〉)φ2j ,

φN+1,t2 = 1
2φN+1(〈�1,�1〉 − 〈�2,�2〉) + 〈�2,�1〉

+ φ2
N+1ψN+1 − 1

2φN+1φN+2ψN+2,

φN+2,t2 = 1
4φN+2(〈�1,�1〉 − 〈�2,�2〉) + 1

2 (〈�3,�1〉 − 〈�2,�3〉),
ψ1j,t2 = (

λ2
j − 1

2φN+1ψN+1 + 1
4φN+2ψN+2

)
ψ1j − (

ψN+1λj − 1
2 〈�1,�2〉

)
ψ2j

− 1
4 (2ψN+2λj + 〈�1,�3〉 + 〈�3,�2〉)ψ3j ,

ψ2j,t2 = −(
φN+1λj − 1

2 〈�2,�1〉
)
ψ1j +

(−λ2
j + 1

2φN+1ψN+1 − 1
4φN+2ψN+2

)
ψ2j

− 1
4 (2φN+2λj + 〈�2,�3〉 − 〈�3,�1〉)ψ3j ,

ψ3j,t2 = − 1
4 (2φN+2λj + 〈�2,�3〉 − 〈�3,�1〉)ψ1j

+ 1
4 (2ψN+2λj + 〈�1,�3〉 + 〈�3,�2〉)ψ2j ,

ψN+1,t2 = −〈�1,�2〉 − 1
2ψN+1(〈�1,�1〉 − 〈�2,�2〉)

−φN+1ψ
2
N+1 + 1

2φN+2ψN+1ψN+2,

ψN+2,t2 = 1
2 (〈�1,�3〉 + 〈�3,�2〉) − 1

4ψN+2(〈�1,�1〉
− 〈�2,�2〉) − 1

2φN+1ψN+1ψN+2,

(16)

where 1 � j � N .

5
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It is a direct but tedious check that the nonlinearized super system (16) can be written in
the following super Hamiltonian form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�1,t2 = ∂H2

∂�1
, �2,t2 = ∂H2

∂�2
, �3,t2 = ∂H2

∂�3
,

φN+1,t2 = ∂H2

∂ψN+1
, φN+2,t2 = ∂H2

∂ψN+2
,

�1,t2 = −∂H2

∂�1
, �2,t2 = −∂H2

∂�2
, �3,t2 = ∂H2

∂�3
,

ψN+1,t2 = − ∂H2

∂φN+1
, ψN+2,t2 = ∂H2

∂φN+2
,

(17)

where the super Hamiltonian is given by

H2 = −〈2�1,�1〉 + 〈2�2,�2〉 + φ〈�1,�2〉 + ψN+1〈�2,�1〉
+ 1

2φN+2(〈�1,�3〉 + 〈�3,�2〉) − 1
2ψN+2(〈�2,�3〉 − 〈�3,�1〉)

+ 1
4 (2φN+1ψN+1 − φN+2ψN+2)(〈�1,�1〉 − 〈�2,�2〉) − 1

2 〈�2,�1〉〈�1,�2〉
+ 1

4 (〈�2,�3〉 − 〈�3,�1〉)(〈�1,�3〉 + 〈�3,�2〉) − 1
2φN+1φN+2ψN+1ψN+2

+ 1
2φ2

N+1ψ
2
N+1.

That is to say, as for t2-part, the nonlinearized super system (16) is a finite-dimensional
super Hamiltonian system. In what follows, we want to prove that for any n � 2, the super
systems (13) and (14) can be nonlinearized, and furthermore, the obtained nonlinearized
system is a finite-dimensional super Hamiltonian system. Therefore, making use of (4) and
equation (5), we obtain the constrained ai, bi, ci, ρi, δi(1 � i � N) in the systems (13) and
(14). Only for differentiation, P̃ (U) denotes the new expression generated from P(U) by the
nonlinear constraint (8), i.e.⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ãi = − 1
4 〈i−2�1,�1〉 − 1

2 〈i−2�2,�2〉, i � 2,

b̃i = − 1
2 〈i−2�2,�1〉, i � 2,

c̃i = − 1
2 〈i−2�1,�2〉, i � 2,

ρ̃i = 1
4 (〈i−2�2,�3〉 − 〈i−2�3,�1〉), i � 2,

δ̃i = − 1
4 (〈i−2�1,�3〉 + 〈i−2�3,�2〉), i � 2.

(18)

Substituting (18) into the super systems (13) and (14), we obtain the nonlinearized super
system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝φ1j

φ2j

φ3j

⎞
⎠

tn

=

⎛
⎜⎜⎝

∑n
i=0 ãiλ

n−i
j

∑n
i=0 b̃iλ

n−i
j

∑n
i=0 ρ̃iλ

n−i
j∑n

i=0 c̃iλ
n−i
j −∑n

i=0 ãiλ
n−i
j

∑n
i=0 δ̃iλ

n−i
j∑n

i=0 δ̃iλ
n−i
j −∑n

i=0 ρ̃iλ
n−i
j 0

⎞
⎟⎟⎠

⎛
⎝φ1j

φ2j

φ3j

⎞
⎠ , 1 � j � N,

⎛
⎝ψ1j

ψ2j

ψ3j

⎞
⎠

tn

=

⎛
⎜⎜⎝

−∑n
i=0 ãiλ

n−i
j −∑n

i=0 c̃iλ
n−i
j

∑n
i=0 δ̃iλ

n−i
j

−∑n
i=0 b̃iλ

n−i
j

∑n
i=0 ãiλ

n−i
j −∑n

i=0 ρ̃iλ
n−i
j

−∑n
i=0 ρ̃iλ

n−i
j −∑n

i=0 δ̃iλ
n−i
j 0

⎞
⎟⎟⎠

⎛
⎝ψ1j

ψ2j

ψ3j

⎞
⎠ , 1 � j � N.

(19)

In what follows, we want to see that the nonlinearized super system (19) is a finite-dimensional
super Hamiltonian system.

6
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From equation (18), we know that the constrained co-adjoint representation equation
Ñx = [M̃, Ñ ] is still satisfied, and furthermore, the equality (Ñ2)x = [M̃, Ñ2] is also
satisfied. Therefore, let

F̃ = 1
2StrÑ2 = ã2 + b̃c̃ + 2ρ̃δ̃.

It is not difficult to calculate that F̃ x = 0, which means that F̃ is a generating function of
integrals of motion for the nonlinearized spatial system (10). Let F̃ = ∑

n�0 F̃ nλ
−n, integrals

of motion F̃ n(n � 0) is given by the following formulas:

F̃ 0 = 1, F̃ 1 = 0,

F̃ 2 = 1

2
(〈�1,�1〉 − 〈�2,�2〉) + φN+1ψN+1 − 1

2
φN+2ψN+2,

F̃ 3 = 1

2
(〈�1,�1〉 − 〈�2,�2〉) − 1

2
φN+1〈�1,�2〉 − 1

2
ψN+1〈�2,�1〉

− 1

4
φN+2(〈�1,�3〉 + 〈�3,�2〉) +

1

4
ψN+2(〈�2,�3〉 − 〈�3,�1〉),

F̃ n =
n−1∑
i=2

[
1

16
(〈i−2�1,�1〉 − 〈i−2�2,�2〉)(〈n−i−2�1,�1〉 − 〈n−i−2�2,�2〉)

− 1

8
(〈i−2�2,�3〉 − 〈i−2�3,�1〉)(〈n−i−2�1,�3〉 + 〈n−i−2�3,�2〉)

+
1

4
〈i−2�2,�1〉〈n−i−2�1,�2〉

]
+

1

2
(〈n−2�1,�1〉 − 〈n−2�2,�2〉)

− 1

4
φN+2(〈n−3�1,�3〉 + 〈n−3�3,�2〉) +

1

4
ψN+2(〈n−3�2,�3〉 − 〈n−3�3,�1〉)

− 1

2
φN+1〈n−3�1,�2〉 − 1

2
ψN+1〈n−3�2,�1〉, n � 4. (20)

After a direct calculation, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�1,tn = −2
∂Fn+2

∂�1
, �2,tn = −2

∂Fn+2

∂�2
, �3,tn = −2

∂Fn+2

∂�3
,

φN+1,tn = −2
∂FN+2

∂ψN+1
, φN+2,tn = −2

∂FN+2

∂ψN+2
,

�1,tn = 2
∂Fn+2

∂�1
, �2,tn = 2

∂Fn+2

∂�2
, �3,tn = −2

∂Fn+2

∂�3
,

ψN+1,tn = 2
∂FN+2

∂φN+1
, ψN+2,tn = −2

∂FN+2

∂φN+2
,

(21)

which means that the nonlinearized temporal system (19) is a super Hamiltonian system. In
conclusion, for any n(n � 1), the nonlinearized system (19) is a finite-dimensional, super
Hamiltonian system. In what follows, we only want to prove that the nonlinearized system
(19) is completely integrable in the Liouville sense.

To this aim, we choose the following Poisson bracket:

{F,G} =
3∑

i=1

N∑
j=1

(
∂F

∂φij

∂G

∂ψij

− (−1)p(φij )p(ψij )
∂F

∂ψij

∂G

∂φij

)

+
2∑

j=1

(
∂F

∂φN+j

∂G

∂ψN+j

− (−1)p(φN+j )p(ψN+j )
∂F

∂ψN+j

∂G

∂φN+j

)
, (22)

7
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where p(u) is a parity function of u, namely p(u) = 0 if u is an even variable and p(u) = 1
if u is an odd variable. It is not difficult to see that F̃ n(n � 0) are also integrals of motion for
equation (19), i.e.

{F̃ m+1, F̃ n+2} = −1

2

∂

∂tn
F̃ m+1 = 0, m, n � 0,

which means that {F̃ n}n�0 are in involution in pair.
With the help of the result of nonlinearization for a classical integrable system [5, 22, 23],

it is natural for us to set

fk = ψ1kφ1k + ψ2kφ2k + ψ3kφ3k, 1 � k � N, (23)

and verify that they are also integrals of motion of the constrained spatial system (10) and
temporal system (19). Making use of (22), it is easy to find that (23) is in involution in pair. For
the nonlinearized spatial system (10) and the nonlinearized temporal system (19), we choose
3N+2 integrals of motion

f1, . . . , fN , F2, F3, . . . , F2N+3, (24)

whose involution has been verified. In what follows, we want to show the functional
independence of (24). Similar to [20, 23, 24], 3N+2 functions (24) are functionally independent
at least over some region of the supersymmetry manifold R

4N+2|2N+2.
Taking into account the preceding program, it is not difficult to draw a conclusion below.

Theorem 1. The constrained (6N+4)-dimensioanl systems (10) and (19) are super
Hamiltonian systems, whose 3N+2 integrals of motion (24) are in involution in pair and
functionally independent over the supersymmetry manifold R

4N+2|2N+2.

Remark 1. The main differences between the finite-dimensional super Hamiltonian systems
in the present paper and reference [20] can be summarized below.

(1) Due to the implicit constraint, we have to introduce other four coordinates in equation (9)
such that the finite-dimensional super Hamiltonian system in the present paper is (6N+4)
dimensional. However, the corresponding system in [20] is 6N dimensional.

(2) Correspondingly, the Poisson bracket in equation (22) is different from equation (36) in
[20].

4. Conclusions and discussions

In this paper, we presented a new finite-dimensional integrable super Hamiltonian system of
the super AKNS system. The difference between this paper and [20] lies in the symmetry
constraint between the potentials and the eigenfunctions, which results in generating a different
finite-dimensional super system. In [20], we have proposed an explicit symmetry constraint.
Substituting the explicit constraint into the spatial system and the temporal system of the
super AKNS system, we have obtained the nonlinearized super system, and furthermore, we
have proved that the obtained nonlinearized system is completely integrable in the Liouville
sense. However, in this paper, we proposed an implicit symmetry constraint (8), which made
the potentials unable to be expressed by eigenfunctions explicitly. Therefore, we refer to the
method of an implicit constraint for a classical integrable system, and introduce four new
variables (9) to explicitly express potentials. After this, we obtained the super nonlinearized
spatial system (10) and the temporal system (19), and proved that the obtained super system
(10) and (19) is the super Hamiltonian system and have 3N+2 integrals of motion, which is in
involution in pair and functionally independent at least over some region of the supersymmetry

8
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manifold R
4N+2|2N+2. Lastly, we would like to stress that the nonlinearization of the super

AKNS system provides a new and systematic way to construct a finite-dimensional super
Hamiltonian system, and there are very few examples [25] of the Hamiltonian system with
fermionic variables in literatures. Additionally, to illustrate the potential applications of the
finite-dimensional super Hamiltonian system obtained in previous sections, we would like
to make the following two points of physics and mathematics, respectively. On the one
hand, it is possible to find these systems in the finite-dimensional super physical theory in
the future, for example, the super analog of the integrable Rosochatius deformation, because
finite-dimensional integrable Rosochatus systems, which are important integrable structures
in string theory, can be obtained [26] through the nonlinearization of the AKNS system. On
the other hand, a finite-dimensional Neumann system [27, 28], which describes the motion
of a particle on SN−1 with a quadratic potential in the N-dimensional space, is derived again
from the AKNS by nonlinearization. So, it is possible to establish the corresponding super
Neumann system in the supersymmetry case through the nonlinearization of the super AKNS
system.

However, for the super AKNS system, we have not yet found another kind of implicit
symmetry constraint, which will engender the finite-dimensional integrable super Hamiltonian
system. The difficulty lies in the selection of new variables. Once we find proper new variables,
the method of nonlinearization for the super AKNS system under new implicit symmetry
constraint will be carried out. In addition, under implicit constraints, nonlinearization of the
other super systems will be studied in our future work.
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